

Feb 19-8:47 AM

Solve
$$2 \sin (x - 30^\circ) - 1 = 0$$
.
 $\sin (x - 30^\circ) = \frac{1}{2}$
R.A. 30°
QI $x - 30^\circ = 30^\circ + 0.360^\circ$ $x = 60^\circ + 0.360^\circ$
QII $x - 30^\circ = 180^\circ - 30^\circ + 0.360^\circ$ $x = 180^\circ + 0.360^\circ$
Solutions in $[0^\circ, 360^\circ)$ $x = 0$ $60^\circ, 180^\circ$
 $x = 1$ Not in $[0^\circ, 360^\circ)$
 $x = 1$ Not in $[0^\circ, 360^\circ)$

Jan 26-7:01 AM

Solve
$$\sqrt{2} \cos\left(2x + \frac{\pi}{2}\right) + 1 = 0$$

$$\cos\left(2x + \frac{\pi}{2}\right) = \frac{-1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$

$$\cos\left(2x + \frac{\pi}{2}\right) = -\frac{\sqrt{2}}{2}$$
R.A. $\frac{\pi}{4}$

QII $2x + \frac{\pi}{2} = \pi - \frac{\pi}{4} + n \cdot 2\pi$

$$8x + 2\pi = 4\pi - \pi + n \cdot 8\pi$$

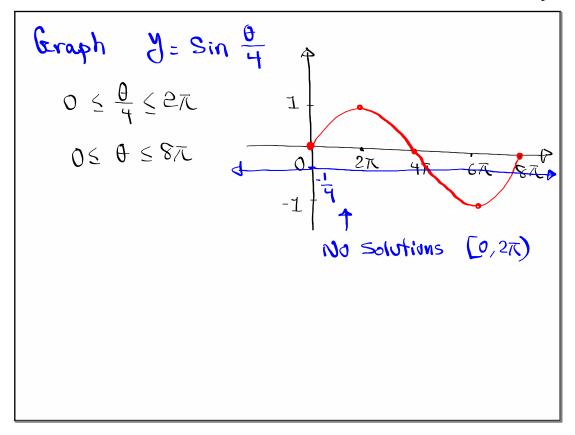
$$8x = \pi + n \cdot 8\pi$$

$$8x = \pi + n \cdot 8\pi$$

$$8x + 2\pi = 4\pi + \pi \cdot 8\pi$$

$$8x + 2\pi = 4\pi + \pi \cdot 8\pi$$

$$8x = 3\pi + n \cdot 8\pi$$
Solutions in $\left[0, 2\pi\right)$ $m = 0$ $\frac{\pi}{8}$, $\frac{3\pi}{8}$


$$n = 1$$
 $\frac{9\pi}{8}$, $\frac{11\pi}{8}$

$$\frac{\pi}{8}$$
, $\frac{3\pi}{8}$, $\frac{9\pi}{8}$, $\frac{11\pi}{8}$

$$\frac{\pi}{8}$$

Jan 26-7:06 AM

Solve
$$3 \sin \frac{\theta}{4} - 2 = 7 \sin \frac{\theta}{4} - 1$$

 $3 \sin \frac{\theta}{4} - 7 \sin \frac{\theta}{4} = -1$ +2
 $-4 \sin \frac{\theta}{4} = 1$
 $\sin \frac{\theta}$

Jan 26-7:23 AM

Solve
$$3x^2 - 9x = 5$$
 $2x^2 - 9x - 5 = 0$
 $(3x + 1)(x - 5) = 0$

Zero - Product Rule
 $2x + 1 = 0$ $x - 5 = 0$
 $x = \frac{1}{2}$ $x = 5$

Solve $3 = \frac{1}{2}$ $x = 5$
 $3 = \frac{1}{2}$ $3 = 5$

R.A. 60°

QII QIII
 $0 = 180^\circ - 60^\circ + 11.360^\circ$ $0 = 180^\circ + 60^\circ + 11.360^\circ$
 $0 = 120^\circ + 11.360^\circ$ $0 = 240^\circ + 11.360^\circ$
 $0 = 120^\circ + 11.360^\circ$ $0 = 240^\circ + 11.360^\circ$
 $0 = 120^\circ + 11.360^\circ$ $0 = 240^\circ + 11.360^\circ$
 $0 = 120^\circ + 11.360^\circ$ $0 = 240^\circ + 11.360^\circ$

Jan 26-7:27 AM

Solve 2
$$\tan \theta + 2 \tan \theta - 1 = 0$$
 $0 \quad 0^2 + b \quad \times + 0 = 0$
 $0 = 2$, $b = 2$, $c = -1$
 $b^2 - 40c = (2)^2 - 4(2)(-1) = 4 + 8 = 12$
 $\tan \theta = \frac{-b \pm \sqrt{b^2 - 40c}}{20} = \frac{-2 \pm \sqrt{12}}{2(2)}$
 $\tan \theta = \frac{-2 + \sqrt{12}}{20} \approx .366$
 $\tan \theta = .366$

R.A. $\tan (1.366) \approx 20^\circ$

QI. QII.

QI. $\theta = 20^\circ + 1.80^\circ$

QII. $\theta = 20^\circ + 1.80^\circ$

QII. $\theta = 20^\circ + 1.80^\circ$

QII. $\theta = 360^\circ - 54^\circ + 1.80^\circ$
 $\theta = 306^\circ + 1.80^\circ$

What about Solutions in $[0^\circ, 360^\circ)$.

 $\pi = 0 \rightarrow 20^\circ, 200^\circ, 126^\circ, 306^\circ$
 $\pi = 1 \rightarrow 200^\circ, 306^\circ$
 $\begin{cases} 20^\circ, 126^\circ, 200^\circ, 306^\circ \end{cases}$

Jan 26-7:36 AM

Solve
$$\sqrt{3} \tan 2\theta - 2 \sin \theta \tan 2\theta = 0$$

Hint: Factor $\tan 2\theta : [\sqrt{3} - 2 \sin \theta] = 0$
 $\tan 2\theta = 0$ or $\sqrt{3} - 2 \sin \theta = 0$
 $\tan 2\theta = 0$ or $\sin \theta = \frac{\sqrt{3}}{2}$
 $\cot 2\theta = 0$ or $\cos \theta = \frac{\sqrt{3}}{2}$
 $\cot \theta = 0$ or $\cos \theta = \frac{\sqrt{3}}{2}$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$ or $\cot \theta = 0$
 $\cot \theta = 0$

Jan 26-7:48 AM

Solve
$$\sin 2\theta + \sqrt{2} \cos \theta = 0$$

Hint: what is $\sin 2\theta$?
 $2\sin\theta\cos\theta + \sqrt{2}(\cos\theta = 0)$
 $\cos\theta(2\sin\theta + \sqrt{2}) = 0$
 $\cos\theta(2\cos\theta + \sqrt$

Jan 26-7:57 AM

Solve
$$4 \cos^2 x + 4 \sin x - 5 = 0$$

Hint:

Express $\cos^2 x$ in terms of $\sin x$
 $\sin^2 x + \cos^2 x = 1 \Rightarrow \cos^2 x = 1 - \sin^2 x$
 $4(1 - \sin^2 x) + 4 \sin x - 5 = 0$
 $4 - 4 \sin^2 x + 4 \sin x - 5 = 0$
 $4 - 4 \sin^2 x + 4 \sin x - 1 = 0$
 $4 \sin^2 x - 4 \sin x + 1 = 0$
 $4 \sin^2 x - 4 \sin x + 1 = 0$
 $5 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4 \sin^2 x - 4 \sin^2 x + 1 = 0$
 $6 = 4$

Jan 26-8:03 AM

Solve
$$\sin \theta - \cos \theta = 1$$
 $\cos \theta = 2 - 2$

Hint: $\sin \theta - \cos \theta = 1$ $\cos \theta = 1$
 $\sin \theta - \cos \theta = 1$
 $\sin \theta - \cos \theta = 1$
 $\sin \theta - 2\sin \theta \cos \theta + \cos \theta = 1$
 $\sin \theta - 2\sin \theta \cos \theta = 1$
 $-\sin \theta = 1 - 1$
 $\sin \theta = 0$
 $\theta = 0^{\circ} + \pi \cdot 360^{\circ} + \theta = 1 \cdot 180^{\circ}$
 $\cos \theta = 1$
 $\cos \theta$

Jan 26-8:35 AM

Solve
$$(\sin \frac{\theta}{2}) + (\cos \theta = 0)$$
 Sor $0 \le \theta < 360^{\circ}$

Hint: Write $\sin \frac{\theta}{2}$ as $\cos \theta$.

Sin $\frac{\theta}{2} \ge \frac{1}{2} \int \frac{1 - \cos \theta}{2}$
 $\frac{1 - \cos \theta}{2} = \cos \theta$

Square both sides to remove the radical.

 $(\pm \sqrt{\frac{1 - \cos \theta}{2}}) = (-\cos \theta)$
 $(\pm \sqrt{\frac{1 - \cos \theta}{2}}) = (-\cos \theta)$
 $(-\cos \theta) = (-\cos \theta)$

Jan 26-8:45 AM

Solve
$$\cos 2x \cos x - \sin 2x \sin x = \sqrt{2}$$
Use known
identities to
rewrite
$$\cos (2x + x) = \sqrt{2}$$

$$\cos (2x + x) = \sqrt{2}$$

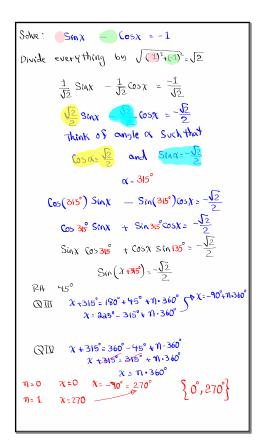
$$\cos (3x + x) = \sqrt{2}$$

Jan 26-8:58 AM

Solve
$$\sqrt{3}$$
 Sinx + $\sqrt{1}$ Cos $\chi = 2$

Divide everything by $\sqrt{(\sqrt{3})^2 + 1^2} = 2$

think of an angle α Such that


 $\cos \alpha = \sqrt{3}$ e Sin $\alpha = \sqrt{2}$ $\Rightarrow \alpha = 30^\circ$
 $\cos 30^\circ \sin x + \sin 30^\circ \cos x = 1$

Sin $(x + 30^\circ) = 1$ $\Rightarrow x = 60^\circ + 1.360^\circ$

Verify:

 $\sqrt{3} \sin 60^\circ + 1 \cdot (\cos 60^\circ = 2\sqrt{3})$
 $\sqrt{3} \cdot \sqrt{3} + \frac{1}{2} = 2$
 $\sqrt{3} \cdot \sqrt{3} + \frac{1}{2} = 2$

Jan 26-9:05 AM

Jan 26-9:14 AM